Propiedades de la transformación de Laplace
Propiedad de linealidad | A F1(t) + B F2(t) ⟷ a f1(S) + B F2(s) |
---|---|
Integración | T∫0 f (λ) dλ ⟷ 1⁄s f (s) |
Multiplicación por el tiempo | T f (t) ⟷ (−d f (s) ⁄ds) |
Propiedad de turno complejo | f (t) e-a ⟷ F (S + A) |
Propiedad de inversión de tiempo | f (-t) ⟷ f (-s) |
- ¿Cuáles son las condiciones para la transformación de Laplace??
- ¿Cuál es la aplicación de la transformación de Laplace??
- ¿Cuáles son los tipos de transformación de Laplace??
¿Cuáles son las condiciones para la transformación de Laplace??
Nota: Una función f (t) tiene una transformación de Laplace, si es de orden exponencial. Teorema (teorema de existencia) Si f (t) es una función continua por partes en el intervalo [0, ∞) y es de orden exponencial α para t ≥ 0, entonces l f (t) existe para S > α.
¿Cuál es la aplicación de la transformación de Laplace??
La transformación de Laplace también se puede utilizar para resolver ecuaciones diferenciales y se usa ampliamente en ingeniería mecánica e ingeniería eléctrica. La transformación de Laplace reduce una ecuación diferencial lineal a una ecuación algebraica, que luego puede resolverse mediante las reglas formales de álgebra.
¿Cuáles son los tipos de transformación de Laplace??
La transformación de Laplace se divide en dos tipos, a saber, la transformación unilateral de Laplace y la transformación de Laplace de dos lados.