- ¿Cómo se encuentra la transformación ROC de Laplace??
- ¿Es posible encontrar la transformación de Laplace de cada función??
- ¿Cómo se encuentra la región de convergencia en z-transformación??
- ¿Cómo se encuentra la transformación de Laplace de una función??
¿Cómo se encuentra la transformación ROC de Laplace??
ROC de señales del lado izquierdo
Para una señal del lado izquierdo X (t), el ROC de la transformación de Laplace X (S) es re (S)<σ2 donde σ2 es una constante. Por lo tanto, el ROC de la transformación de Laplace de una señal del lado izquierdo es a la izquierda de la línea σ = σ2.
¿Es posible encontrar la transformación de Laplace de cada función??
También debe tenerse en cuenta que no todas las funciones tienen una transformación de Laplace. Por ejemplo, la función 1/t no tiene una transformación de Laplace ya que la integral diverge para todos. Del mismo modo, Tant o ET2DO no tienen transformaciones de Laplace.
¿Cómo se encuentra la región de convergencia en z-transformación??
Para x (n) = δ (n), i.mi., La secuencia de impulso es la única secuencia cuya ROC de transformación Z es todo el plano Z. Si x (n) es una secuencia causal de duración infinita, entonces su ROC es | Z |>A, yo.mi., es el exterior de un círculo del radio igual a un.
¿Cómo se encuentra la transformación de Laplace de una función??
Si crea una función agregando dos funciones, su transformación de Laplace es simplemente la suma de la transformación de Laplace de las dos funciones. Si crea una función multiplicando dos funciones en el tiempo, no hay una manera fácil de encontrar la transformación de Laplace de la función resultante.