- ¿Cómo se calcula Reed-Solomon??
- ¿Cómo funcionan los códigos de solomón??
- ¿Qué es RS en código??
- ¿Cuántos errores pueden corregir Reed-Solomon??
¿Cómo se calcula Reed-Solomon??
Un Codeword de Reed-Solomon tiene síndromes 2T que dependen solo de los errores (no de la palabra de código transmitido). Los síndromes se pueden calcular sustituyendo las raíces 2T del polinomio del generador G (x) en r (x). Esto se puede hacer usando el algoritmo Berlekamp-Massey o el algoritmo de Euclid.
¿Cómo funcionan los códigos de solomón??
Los códigos de caña -Solomon pueden detectar y corregir múltiples errores de símbolo. Al agregar t = n - k verifica los símbolos a los datos, un código Reed -Solomon puede detectar (pero no correcto) cualquier combinación de símbolos erróneos, o ubicar y corregir hasta símbolos erróneos ⌊T/2⌋ en ubicaciones desconocidas.
¿Qué es RS en código??
Los códigos de Reed-Solomon (RS) son una subclase importante de los códigos BCH no binarios. Los códigos RS tienen una distancia mínima verdadera que es el máximo posible para un código lineal (n, k), como en la ecuación 14.27. Por lo tanto, son ejemplos de códigos de máxima distancia-separables.
¿Cuántos errores pueden corregir Reed-Solomon??
El código estándar (255, 223) Reed-Solomon es capaz de corregir hasta 16 errores de símbolos de láminas en cada codeword. Dado que cada símbolo es en realidad ocho bits, esto significa que el código puede corregir hasta 16 ráfagas cortas de error debido al decodificador convolucional interno.